DINK: Differently Initialized Q-Networks

Atiksh Bhardwaj Jonathan Chen
(ab2635) (jqe3)

GitHub Repository

1 Introduction

Q-Networks represent an off-policy reinforcement learning approach centered on estimating value
functions from environments. As an off-policy method, it relies on an external dataset for learning
and computing Q-values. This dependency on provided data can yield diverse outcomes, either
enhancing or hindering the Q-Network’s performance. To delve into this dynamic, we embarked
on an investigation utilizing conventional imitation learning techniques like Behavior Cloning and
DAgger to generate data for training Q-Networks. Our objective is to train and contrast these two
approaches alongside expert data sourced from the Atari Grand Challenge (AGC), specifically in
the OpenAl Space Invaders gym environment. This exploration aims to shed light on whether Deep
Q-Networks possess the capability to learn effectively from various datasets, or if their performance
is heavily contingent upon the quality of the initial dataset used for training.

Figure 1: Atari Space Invaders

2 Problem

2.1 Motivation

We enjoy video games, and initially wanted to do a project on Space Invaders, and found several
videos and projects online that did Space Invaders with Q-Networks. Thus we came up with an
experiment to incorporating Q-Network as this is the first fitted model we learned and also one that is
an off-policy algorithm, which allows our question to be more interesting as on-policy models have
variation with the initial policies. However, Q-Networks, only rely on an initial dataset, which can
come from any source including the untrained dataset. Thus, we wanted to see whether performance
changes in Q-Networks based on this initialized dataset.


https://github.com/AtikshB/DINK-CS4756-Final

2.2 Problem Statement

We propose the following question: Does initialization by different datasets such as those created by
expert humans, a BC policy, or a DAgger policy affect the performance of a Q-Network? This will
help in determining what the ideal initialization for a Q-Network would be for ideal performance and
learning.

2.3 Hypothesis
Based on the problem statement, define the function J(7) as the performance of a policy:

J(Q@Human Expert Data) > J (QDAgger) > J(@pc) )

where J(QHuman Expert Data) i the Q-Network initialized with the human expert data,

J(Qp Agger) is initialized with the DAgger created data, and J(Qp) is initialized with the BC
created data.

As we plan to initialize DAgger with BC:

J(DAgger) > J(BC) 2
and the human expert data will be strictly better than both policies as the human will have bet-

ter knowledge of possible danger cases, whereas the above policies can only work in their data
distribution.

3 Approach

—)

Figure 2: Gray scaling of input images

3.1 Atari Grand Challenge Data

In order to train an imitation learning agent, we need to collect expert trajectories for our models.
As with most games, players can employ a variety of strategies to play Space Invaders. Thus it is
difficult to classify any player or agent an "expert" with regards to expert policies.

Our solution was to use the open-source Atari Grand Challenge (AGC) [2] repository, which includes
Space Invaders replays generated through a crowd-sourcing effort. This will serve as the basis for a
separate, initial dataset of expert trajectories.

We first sample the top 15 trajectories from this repository. These top 15 trajectories all have a final
score above 1400. Each trajectory encodes the game state and the action taken by the human player
at a certain frame/timestep.

The raw data for game state are screenshots of the game taken at each frame; we read these images in
and convert them to grayscale to decrease the observation space without any loss of information. We



then flatten this 2D array to prepare it for a linear neural network layer. The game state is combined
with current score (cumulative reward) and current action to form one time step of the environment.
Additionally, we map human misinputs, i.e. human players pressing buttons that have no effect on

the game, to the NO-OP action (See [Section 3.2).

3.2 Environment

We use the OpenAl gym environment to train our models. This environment has an observation
space of 210%*160*3, representing the height and width of the screen and 3 RGB channels. This
environment has an action space of 6, representing the 6 valid controls for the game (NO-OP, FIRE,
RIGHT, LEFT, RIGHTFIRE, LEFTFIRE).

We can further parameterize the base Spacelnvaders-v0 environment with two options: sticky actions
and frame skips. Sticky actions introduce stochasticity into the environment by repeating the same
action from the last timestep instead of from the actual policy, with some probability 5. Frame skips
mean that the environment steps multiple frames at once for each action taken. These two parameters
can affect the exploration vs. exploitation of learned policies. During training we set sticky actions
B = 0.15, with no frame skips, and we maintained these hyperparameters in testing.

3.3 Models

3.3.1 Imitation Learning: BC and DAgger

We first implement two classic imitation learning models: Behavior Cloning and DAgger. The
implementations of both were adapted from Assignment 2 [[1]]. Our BC model has a neural network
architecture that takes in a 210%*160 long vector from the images, then sends it through two hidden
layers followed by ReLU activation functions. The output layer has 6 outputs, each representing
the likelihood to take one of 6 possible actions. This architecture learns a policy from taking the
maximum of these likelihoods as its action. The initial dataset are the top 15 trajectories from the
Atari Grand Challenge dataset.

We then use the DAgger paradigm to improve the performance of our imitation learning agent.
Starting with the same initial dataset and same architecture as the BC model, we query a pre-trained
PPO agent [3] for expert actions. This pre-trained agent will allow us to query for high-quality expert
actions on demand. DAgger is implemented with the following algorithm:

Algorithm 1 DAgger

1: procedure TRAIN(b, d, 7*) > b is the BC learner policy
2: Dataset D < d

3: Policy mg < b

4: Number of interactions N < 25

5 for i < 1to N do

6: while not done do

7: state, action (s, a) < environment stepped by ;
8: query expert 7* with s for optimal a*
9: trajectory ¢ <— ¢t U (s, a™)

10: end while
11: D+ DUt
12: Train ;4 on updated D
13: end for
14: return best m;

15: end procedure

3.3.2 Q-Network

Our Q-Network has a basic architecture which takes in a 210¥160 long vector from the images,
and then passed through 2 linear layers which each are followed by ReL.U to generate Q-Values for
training. The computed values are compared to target Q-Values that are computed based on the next



observation’s maximum Q-values that are computed from the network, reward, and done flag for that
specific state that is passed through as done in the equation below:

N—-1
Q*t —argmin 3 [asisa0) = (r(si = a;) + 7 max Q*(si11,0)] @
1=0

Equation (3) represents the optimization problem for the Q-Network, where it finds the ¢ € Q that
minimizes the above using the previous network’s Q" function.

During train time, we chose to take an online approach, where every four epochs we let the model run
on the environment and collect data for it to learn. Additionally, the loss for the Q-Network takes the
MSE between the computed Q-Values and the target Q-Values as seen in equation (3). We train the
networks with a learning rate of 1 - 10~5, and a discount factor of v = 0.99. The discount factor had
been chosen to be a large value has reward in the space invaders environment is sparse, so discounting
would make it difficult to learn. Additionally, we have random exploration with € = 0.01 to allow the
model explore and find better actions than what it generates, as Space Invaders is a fairly random
game to the model.

Algorithm 2 Fitted Q-Value Iteration (online learning)

1: procedure TRAIN(T) > 7 is the input dataset
2: Initialize function ¢ € Q
Number of epochs K < 25
for k < 1to K do
QFF! + argmingeq ZZNZBI lq(si,a;) — (r(s; — a;) + v - max, QF(si11,a)]
Every 4 iterations, T +— 7 U trajectories collected with 7, = max, Q" (s, a), which is ¢
greedy sampling uniformly if probability < e
7 end for
8: return best 7(s) = argmax,c Q% (s, a) Vs
9: end procedure

AR

3.4 Methodology

The goal of our experiment is to determine how initializing Q-Networks might affect their performance.
Our experiment setup is as follows:

. Preprocess and filter trajectories from the Atari Grand Challenge Dataset

. Train BC and DAgger (with the help of expert PPO agent)

. Collect datasets of trajectories using learned policies from BC and DAgger

B W DO =

. Initialize three Q-Network models with the three datasets:
original AGC trajectories, trajectories from BC policy, trajectories from DAgger policy

5. Compare average scores over 50 runs for BC, DAgger, AGC Q-Network, BC Q-Network,
and DAgger Q-Network.



4 Results

4.1 DQN Loss and Score Plots

500
359 450
400
301
" " 350
g k:
254 300
250
204
200
15 1 150
E) .;) 1‘0 1'5 Zb 2‘5 0 ‘5 fD 1‘5 2'0 2‘5
Epoch Epoch
Atari Expert QN BC QN
35
30
25
§ 20
15
10
5
0 10 15 20 25
Epoch
Dagger QN
Figure 3: Comparison of Q-Network Loss
250
500 4
400 200
g @
& 300 4150
2001 100
100 4 50
0 _") 1‘0 1‘5 Z‘D 2‘5 E) ‘5 1‘0 1‘5 ZID 2‘5
Epoach Epoch
Atari Expert QN BC QN
600 1
500 1
400
o
; 300 4
200 4
100
01 T T T T T
0 10 15 20 25
Epoch
Dagger QN

Figure 4: Comparison of Q-Network Reward (Per Epoch)



4.2 Comparison of Models by Average Score

Average scores over 50 runs

250

200 A

150 A

Scores

100 A

50 ~

AGC QN BC ON DAgger QN BC DAgger
Models

Figure 5: Average Score for each Model

4.3 Analysis

1. Looking at Figure 3} the graphs of the loss functions for the Atari Expert data Q-Network and the
DAgger Q-Network are quite similar reaching fairly loss values and fitting well to their data. Training
is stable and converges after around 20 epochs. In comparison, the BC Q-Network has a lot more
randomness in the change in loss, but over time slowly drives down. With more epochs, the loss
could be driven down further. Based on these graphs, we can interpret that the Atari and DAgger
based Q-Networks have fitted well to the provided data and the online data it created, whereas with
the BC Q-Network, the algorithm needs more training to fit as well as possible.

2. On Figure 4} all the models have high stochasticity during training partially due to the Space
Invaders environment having built-in stochasity and partially from the stochastic exploration built
into the Q-Network. However, we can observe that Atari and DAgger have fairly consistent rewards
in comparison to BC which has high variation in rewards leading to incredible erratic results. The
consistency for the Atari and DAgger QNs can be due to the data being provided has consistent
reward in the environment, which can be verified in figure 5. BC, due to the small training data, had
erratic decision making, but also had learnt more of the expert actions for the specific times where it
ended in a similar situation as an expert leading to higher scores on the average.

3. For Figure 5] the results show that BC QN had the highest average score hovering around 240-250,
with DAgger and DAgger QN behind at around 225 score. BC performed the worst due to most of
the environments being out of distribution for the data that it had been trained on. BC QN ended with
the highest score due the stochasticity described above allowing it learn Q-Values that would lead
to better scores, thus leading to a higher average score in performance. This essentially allowed the
model to explore more than the Atari QN and DAgger QN which were hampered by their datasets
having more consistency in comparison to BC.

However, based on these graphs the three different initializations resulted in similar average scores
varying from 190 to 250 score which is the difference between shooting two to three more aliens.
Thus, the dataset initialization did not actively impact the Q-Network, and the performance could be
more related to the relevant hyperparameters such as -, ¢, and the learning rate.



5 Conclusion

Our findings suggest that the initial dataset provided to a Q-Network model does not have a significant
impact on its overall performance. This is despite the fact that the performance of the agents that
produced those datasets vary drastically in performance. Our original hypothesis that the Q-Network
initialized with expert human data would perform the best is not supported by our results. Rather, our
findings support this conclusion:

J(QHuman Expert Data) ~ J <QDAgger) ~ J(@pc) )

These results are under the assumption that a small subset of expert trajectories and a low number of
epochs are sufficient for training. These results may change with different hyperparameters, more
epochs, and more training data.

6 Further Work and Implications

As mentioned, our Q-Network simply used linear layers to calculate the Q-Values, but the environment
originally works with (210, 64, 3) shaped images. A followup would be to change our model to work
with convolutional layers so that it can gain a better spatial understanding. Thus we can expand the
model depth, so it can gain more understanding of the observations.

Additionally, for improved model performance, the Space Invader environment allows for frame
skipping, allowing the model to skip images that do not have any relevant information such as frames
between an Alien shooting or the Spaceship shooting. This would also allow for better performance
gains and give a consistent model that can perform well.

7 Work Assignment

Atiksh:

* Q-Network Model
* BC Model
* DAgger Model

* Experiment setup
Jonathan:

e Dataloader
* Preprocessing
¢ Visualization

* Experiment setup

The writing of the report was equally split between Atiksh and Jonathan.

References
[1] S. Choudhury. Cs4756 robot learning spring 2024. URL https://github.com/
portal-cornell/cs4756-robot-learning-sp24.

[2] V. Kurin, S. Nowozin, K. Hofmann, L. Beyer, and B. Leibe. The atari grand challenge dataset.
CoRR, abs/1705.10998, 2017. URL http://arxiv.org/abs/1705.10998.

[3] D. Tyagi. Implementations of deep reinforcement learning algorithms and bench-marking with
pytorch. URL https://deepanshut041.github.io/Reinforcement-Learning/|


https://github.com/portal-cornell/cs4756-robot-learning-sp24
https://github.com/portal-cornell/cs4756-robot-learning-sp24
http://arxiv.org/abs/1705.10998
https://deepanshut041.github.io/Reinforcement-Learning/

	Introduction
	Problem
	Motivation
	Problem Statement
	Hypothesis

	Approach
	Atari Grand Challenge Data
	Environment
	Models
	Imitation Learning: BC and DAgger
	Q-Network

	Methodology

	Results
	DQN Loss and Score Plots
	Comparison of Models by Average Score
	Analysis

	Conclusion
	Further Work and Implications
	Work Assignment

